
Chapter 1

Preconditioning

When I first realized that practical imaging methods in widespread industrial use amounted
merely to the adjoint of forward modeling, I (and others) thought an easy way to achieve
fame and fortune would be to introduce the first steps towards inversion along the lines of
Chapter??. Although inversion generally requires a prohibitive number of steps, I felt that
moving in the gradient direction, the direction of steepest descent, would move us rapidly in
the direction of practical improvements. This turned out to be optimistic. It was too slow. But
then I learned about the conjugate gradient method that spectacularly overcomes a well-known
speed problem with the method of steepest descents. I came to realize that it was still too slow.
I learned this by watching the convergence in Figure 1.5. This led me to the helix method in
Chapter??. Here we’ll see how it speeds many applications.

We’ll also come to understand why the gradient is such a poor direction both for steepest
descent and for conjugate gradients. An indication of our path is found in the contrast between
and exact solutionm = (A′A)−1A′d and the gradient1m = A′d (which is the first step starting
from m = 0). Notice that1m differs fromm by the factor (A′A)−1. This factor is sometimes
called a spectrum and in some situations it literally is a frequency spectrum. In these cases,
1m simply gets a different spectrum fromm and many iterations are required to fix it. Here
we’ll find that for many problems, “preconditioning” with the helix is a better way.

1.1 PRECONDITIONED DATA FITTING

Iterative methods (like conjugate-directions) can sometimes be accelerated by a change of
variables. The simplest change of variable is called a “trial solution”. Formally, we write the
solution as

m = Sp (1.1)

wherem is the map we seek, columns of the matrixSare “shapes” that we like, and coefficients
in p are unknown coefficients to select amounts of the favored shapes. The variablesp are
often called the “preconditioned variables”. It is not necessary thatS be an invertible matrix,

1

2 CHAPTER 1. PRECONDITIONING

but we’ll see later that invertibility is helpful. Take this trial solution and insert it into a typical
fitting goal

0 ≈ Fm − d (1.2)

and get

0 ≈ FSp − d (1.3)

We pass the operatorFS to our iterative solver. After finding the best fittingp, we merely
evaluatem = Sp to get the solution to the original problem.

We hope this change of variables has saved effort. For each iteration, there is a little more
work: Instead of the iterative application ofF andF′ we have iterative application ofFS and
S′F′. Our hope is that the number of iterations decreases because we are clever, or because we
have been lucky in our choice ofS. Hopefully, the extra work of the preconditioner operator
S is not large compared toF. If we should be so lucky thatS= F−1, then we get the solution
immediately. Obviously we would try any guess withS≈ F−1. Where I have known suchS
matrices, I have often found that convergence is accelerated, but not by much. Sometimes it
is worth usingFS for a while in the beginning, but later it is cheaper and faster to use only
F. A practitioner might regard the guess ofS as prior information, like the guess of the initial
modelm0.

For a square matrixS, the use of a preconditioner should not change the ultimate solu-
tion. TakingS to be a wide rectangular matrix, reduces the number of adjustable parameters,
changes the solution, gets it quicker, but lower resolution.

1.1.1 Preconditioner with a starting guess

In many applications, for many reasons, we have a starting guessm0 of the solution. You might
worry that you could not find the starting preconditioned variablep0 = S−1m0 because you did
not know the inverse ofS. The way to avoid this problem is to reformulate the problem in terms
of a new variablem̃ wherem = m̃+m0. Then0 ≈ Fm−d becomes0 ≈ Fm̃− (d−Fm0) or
0 ≈ Fm̃− d̃. Thus we have accomplished the goal of taking a problem with a nonzero starting
model and converting it a problem of the same type with a zero starting model. Thus we do
not need the inverse ofS because the iteration starts from̃m = 0 sop0 = 0.

1.2 PRECONDITIONING THE REGULARIZATION

The basic formulation of a geophysical estimation problem consists of setting uptwo goals,
one for data fitting, and the other for model shaping. With two goals, preconditioning is
somewhat different. The two goals may be written as:

0 ≈ Fm−d (1.4)

0 ≈ Am (1.5)

1.2. PRECONDITIONING THE REGULARIZATION 3

which defines two residuals, a so-called “data residual” and a “model residual” that are usually
minimized by conjugate-gradient, least-squares methods.

To fix ideas, let us examine a toy example. The data and the first three rows of the matrix
below are random numbers truncated to integers. The model roughening operatorA is a first
differencing operator times 100.

d(m) F(m,n) iter Norm
--- -- ---- -----------

41. -55. -90. -24. -13. -73. 61. -27. -19. 23. -55. 1 20.00396538
33. 8. -86. 72. 87. -41. -3. -29. 29. -66. 50. 2 12.14780140

-58. 84. -49. 80. 44. -52. -51. 8. 86. 77. 50. 3 8.94393635
0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 6.04517126
0. -100. 100. 0. 0. 0. 0. 0. 0. 0. 0. 5 2.64737511
0. 0.-100. 100. 0. 0. 0. 0. 0. 0. 0. 6 0.79238468
0. 0. 0.-100. 100. 0. 0. 0. 0. 0. 0. 7 0.46083349
0. 0. 0. 0.-100. 100. 0. 0. 0. 0. 0. 8 0.08301232
0. 0. 0. 0. 0.-100. 100. 0. 0. 0. 0. 9 0.00542009
0. 0. 0. 0. 0. 0.-100. 100. 0. 0. 0. 10 0.00000565
0. 0. 0. 0. 0. 0. 0.-100. 100. 0. 0. 11 0.00000026
0. 0. 0. 0. 0. 0. 0. 0.-100. 100. 0. 12 0.00000012
0. 0. 0. 0. 0. 0. 0. 0. 0.-100. 100. 13 0.00000000

Notice at the tenth iteration, the residual suddenly plunges 4 significant digits. Since there
are ten unknowns and the matrix is obviously full-rank, conjugate-gradient theory tells us to
expect the exact solution at the tenth iteration. This is the first miracle of conjugate gradients.
(The residual actually does not drop to zero. What is printed in theNorm column is the square
root of the sum of the squares of the residual components at theiter -th iteration minus that
at the last interation.)

1.2.1 The second miracle of conjugate gradients

The second miracle of conjugate gradients is exhibited below. The data and data fitting matrix
are the same, but the model damping is simplified.

d(m) F(m,n) iter Norm
--- -- ---- ----------

41. -55. -90. -24. -13. -73. 61. -27. -19. 23. -55. 1 3.64410686
33. 8. -86. 72. 87. -41. -3. -29. 29. -66. 50. 2 0.31269890

-58. 84. -49. 80. 44. -52. -51. 8. 86. 77. 50. 3 -0.00000021
0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 -0.00000066
0. 0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 5 -0.00000080
0. 0. 0. 100. 0. 0. 0. 0. 0. 0. 0. 6 -0.00000065
0. 0. 0. 0. 100. 0. 0. 0. 0. 0. 0. 7 -0.00000088
0. 0. 0. 0. 0. 100. 0. 0. 0. 0. 0. 8 -0.00000074
0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 0. 9 -0.00000035
0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 10 -0.00000037
0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 11 -0.00000018
0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 12 0.00000000
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.00000000

4 CHAPTER 1. PRECONDITIONING

Even though the matrix is full-rank, we see the residual drop about 6 decimal places after
the third iteration! This convergence behavior is well known in the computational mathemat-
ics literature. Despite its practical importance, it doesn’t seem to have a name or identified
discoverer. So I call it the “second miracle.”

Practitioners usually don’t like the identity operator for model-shaping. Generally they
prefer to penalize wiggliness. For practitioners, the lesson of the second miracle of conjugate
gradients is that we have a choice of many iterations, or learning to transform independent
variables so that the regularization operator becomes an identity matrix. Basically, such a
transformation reduces the iteration count from something about the size of the model space
to something about the size of the data space. Such a transformation is called preconditioning.
In practice, data is often accumulated in bins. Then the iteration count is reduced (in principle)
to the count of full bins and should be independent of the count of the empty bins. This allows
refining the bins, enhancing the resolution.

More generally, the model goal0 ≈ Am introduces a roughening operator like a gradient,
Laplacian (and in chapter 6 a Prediction-Error Filter (PEF)). Thus the model goal is usually a
filter, unlike the data-fitting goal which involves all manner of geometry and physics. When
the model goal is a filter its inverse is also a filter. Of course this includes multidimensional
filters with a helix.

The preconditioning transformationm = Spgives us

0 ≈ FSp−d
0 ≈ ASp

(1.6)

The operatorA is a roughener whileS is a smoother. The choices of bothA andS are some-
what subjective. This suggests that we eliminateA altogether bydefiningit to be proportional
to the inverse ofS, thusAS = I . The fitting goals become

0 ≈ FSp−d
0 ≈ ε p

(1.7)

which enables us to benefit from the “second miracle”. After findingp, we obtain the final
model withm = Sp.

Deconvolution on a helix is an all-purpose preconditioning strategy for multidimensional
model regularization.

1.2.2 Importance of scaling

Another simple toy example shows us the importance of scaling. We use the same example as
above except that thei -th column is multiplied byi /10 which means thei -th model variable
has been divided byi /10.

d(m) F(m,n) iter Norm

1.2. PRECONDITIONING THE REGULARIZATION 5

--- -- ---- -----------
41. -6. -18. -7. -5. -36. 37. -19. -15. 21. -55. 1 11.59544849
33. 1. -17. 22. 35. -20. -2. -20. 23. -59. 50. 2 6.97337770

-58. 8. -10. 24. 18. -26. -31. 6. 69. 69. 50. 3 5.64414406
0. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 4.32118177
0. 0. 20. 0. 0. 0. 0. 0. 0. 0. 0. 5 2.64755201
0. 0. 0. 30. 0. 0. 0. 0. 0. 0. 0. 6 2.01631355
0. 0. 0. 0. 40. 0. 0. 0. 0. 0. 0. 7 1.23219979
0. 0. 0. 0. 0. 50. 0. 0. 0. 0. 0. 8 0.36649203
0. 0. 0. 0. 0. 0. 60. 0. 0. 0. 0. 9 0.28528941
0. 0. 0. 0. 0. 0. 0. 70. 0. 0. 0. 10 0.06712411
0. 0. 0. 0. 0. 0. 0. 0. 80. 0. 0. 11 0.00374284
0. 0. 0. 0. 0. 0. 0. 0. 0. 90. 0. 12 -0.00000040
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.00000000

We observe that solving the same problem for the scaled variables has required a severe in-
crease in the number of iterations required to get the solution. We lost the benefit of the second
CG miracle. Even the rapid convergence predicted for the 10-th iteration is delayed until the
12-th.

1.2.3 Statistical interpretation

This book is not a statistics book. Never-the-less, many of you have some statistical knowledge
that allows you a statistical interpretation of these views of preconditioning.

A statistical concept is that we can combine many streams of random numbers into a
composite model. Each stream of random numbers is generally taken to be uncorrelated with
the others, to have zero mean, and to have the same variance as all the others. This is often
abbreviated as IID, denoting Independent, Identically Distributed. Linear combinations like
filtering and weighting operations of these IID random streams can build correlated random
functions much like those observed in geophysics. A geophysical practitioner seeks to do
the inverse, to operate on the correlated unequal random variables and create the statistical
ideal random streams. The identity matrix required for the “second miracle”, and our search
for a good preconditioning transformation are related ideas. The relationship will become
more clear in chapter 6 when we learn how to estimate the best roughening operatorA as a
prediction-error filter.

Two philosophies to find a preconditioner:

1. Dream up a smoothing operatorS.

2. Estimate a prediction-error filterA, and then use its inverseS= A−1.

The outstanding acceleration of convergence by preconditioning suggests that the philos-
ophy of image creation by optimization has a dual orthonormality: First, Gauss (and common
sense) tells us that the data residuals should be roughly equal in size. Likewise in Fourier
space they should be roughly equal in size, which means they should be roughly white, i.e.

6 CHAPTER 1. PRECONDITIONING

orthonormal. (I use the word “orthonormal” because white means the autocorrelation is an im-
pulse, which means the signal is statistically orthogonal to shifted versions of itself.) Second,
to speed convergence of iterative methods, we need a whiteness, another orthonormality, in the
solution. The map image, the physical function that we seek, might not be itself white, so we
should solve first for another variable, the whitened map image, and as a final step, transform
it to the “natural colored” map.

1.2.4 The preconditioned solver

Summing up the ideas above, we start from fitting goals

0 ≈ Fm−d
0 ≈ Am

(1.8)

and we change variables fromm to p usingm = A−1p

0 ≈ Fm−d = FA−1 p−d
0 ≈ Am = I p

(1.9)

Preconditioning means iteratively fitting by adjusting thep variables and then finding the
model by usingm = A−1p. A new reusable preconditioned solver is the moduleprec_solver

on this page. The variablex in prec_solver refers tom. Likewise the modeling operatorF
is calledoper and the smoothing operatorA−1 is calledprec . Details of the code are only
slightly different from the regularized solverreg_solver on page ??.

module prec_solver {
logical, parameter, private :: T = .true., F = .false.

contains
subroutine solver_prec(oper, solv, prec, nprec, x, dat, niter, eps, p0) {

optional :: p0
interface {

integer function oper(adj, add, x, dat) {
logical, intent (in) :: adj, add
real, dimension (:) :: x, dat

}
integer function solv(forget, x, g, rr, gg) {

logical :: forget
real, dimension (:) :: x, g, rr, gg

}
integer function prec(adj, add, x, dat) {

logical, intent (in) :: adj, add
real, dimension (:) :: x, dat

}
}
real, dimension (:), intent (in) :: dat, p0 # data, initial
real, dimension (:), intent (out) :: x # solution
real, intent (in) :: eps # scaling
integer, intent (in) :: niter, nprec # iterations, size
real, dimension (nprec) :: g, p # gradient, precond
real, dimension (size (dat) + nprec), target :: rr, gg # residual, conj grad

1.3. OPPORTUNITIES FOR SMART DIRECTIONS 7

real, dimension (:), pointer :: rd, rm, gd, gm
integer :: i, stat1, stat2, stat
rm => rr (1 : nprec) ; rd => rr (1 + nprec :) # model and data resids
gm => gg (1 : nprec) ; gd => gg (1 + nprec :) # model and data grads

rd = -dat # initialize r_d
if(present(p0)) {

stat1 = prec(F, F, p0, x) # x = S p
stat2 = oper(F, T, x, rd) # r_d = L x - dat

p = p0 ; rm = p0*eps} # start with p0
else { p = 0. ; rm = 0.} # start with zero
do i = 1, niter {

stat2 = oper(T, F, x, rd)
stat1 = prec(T, F, g, x) # g = S’ L’ r_d
g = g + eps*rm # g = S’ L’ r_d + eps I r_m
stat1 = prec(F, F, g, x)
stat2 = oper(F, F, x, gd) # g_d = L S g
gm = eps*g # g_m = eps I g
stat = solv (F, p, g, rr, gg) # step in p and rr

}
stat1 = prec(F, F, p, x) # x = S p

}
}

1.3 OPPORTUNITIES FOR SMART DIRECTIONS

Recall the fitting goals (1.10)

0 ≈ rd = Fm−d = FA−1 p−d
0 ≈ rm = Am = I p

(1.10)

Without preconditioning we have the search direction

1mbad =
[

F′ A′
][

rd

rm

]
(1.11)

and with preconditioning we have the search direction

1pgood =
[

(FA−1)′ I
][

rd

rm

]
(1.12)

The essential feature of preconditioning is not that we perform the iterative optimization in
terms of the variablep. The essential feature is that we use a search direction that is a gradient
with respect top′ not m′. UsingAm = p we haveA1m = 1p. This enables us to define a
good search direction in model space.

1mgood = A−11pgood = A−1(A−1)′F′rd +A−1rm (1.13)

Define the gradient byg = F′rd and notice thatrm = p.

1mgood = A−1(A−1)′ g+m (1.14)

8 CHAPTER 1. PRECONDITIONING

The search direction (1.14) shows a positive-definite operator scaling the gradient. Each
component of any gradient vector is independent of each other. All independently point a
direction for descent. Obviously, each can be scaled by any positive number. Now we have
found that we can also scale a gradient vector by a positive definite matrix and we can still
expect the conjugate-gradient algorithm to descend, as always, to the “exact” answer in a finite
number of steps. This is because modifying the search direction withA−1(A−1)′ is equivalent
to solving a conjugate-gradient problem inp.

1.4 NULL SPACE AND INTERVAL VELOCITY

A bread-and-butter problem in seismology is building the velocity as a function of depth (or
vertical travel time) starting from certain measurements. The measurements are described
elsewhere (BEI for example). They amount to measuring the integral of the velocity squared
from the surface down to the reflector. It is known as the RMS (root-mean-square) velocity.
Although good quality echos may arrive often, they rarely arrive continuously for all depths.
Good information is interspersed unpredictably with poor information. Luckily we can also
estimate the data quality by the “coherency” or the “stack energy”. In summary, what we get
from observations and preprocessing are two functions of travel-time depth, (1) the integrated
(from the surface) squared velocity, and (2) a measure of the quality of the integrated velocity
measurement. Some definitions:

d is a data vector whose components range over the vertical traveltime depthτ , and whose
component values contain the scaled RMS velocity squaredτv2

RMS/1τ whereτ/1τ is
the index on the time axis.

W is a diagonal matrix along which we lay the given measure of data quality. We will use it
as a weighting function.

C is the matrix of causal integration, a lower triangular matrix of ones.

D is the matrix of causal differentiation, namely,D = C−1.

u is a vector whose components range over the vertical traveltime depthτ , and whose com-
ponent values contain the interval velocity squaredv2

interval.

From these definitions, under the assumption of a stratified earth with horizontal reflectors
(and no multiple reflections) the theoretical (squared) interval velocities enable us to define
the theoretical (squared) RMS velocities by

Cu = d (1.15)

With imperfect data, our data fitting goal is to minimize the residual

0 ≈ W [Cu−d] (1.16)

1.4. NULL SPACE AND INTERVAL VELOCITY 9

To find the interval velocity where there is no data (where the stack power theoretically
vanishes) we have the “model damping” goal to minimize the wigglinessp of the squared
interval velocityu.

0 ≈ Du = p (1.17)

We precondition these two goals by changing the optimization variable from interval ve-
locity squaredu to its wigglinessp. Substitutingu = Cp gives the two goals expressed as a
function of wigglinessp.

0 ≈ W
[
C2p−d

]
(1.18)

0 ≈ ε p (1.19)

1.4.1 Balancing good data with bad

Choosing the size ofε chooses the stiffness of the curve that connects regions of good data.
Our first test cases gave solutions that we interpreted to be too stiff at early times and too flexi-
ble at later times. This leads to two possible ways to deal with the problem. One way modifies
the model shaping and the other modifies the data fitting. The program below weakens the
data fitting weight with time. This has the same effect as stiffening the model shaping with
time.

Figure 1.1: Raw CMP gather (left), Semblance scan (middle), and semblance value used for
weighting function (right). (Clapp)prc-clapp [ER]

10 CHAPTER 1. PRECONDITIONING

Figure 1.2: Observed RMS velocity and that predicted by a stiff model withε = 4. (Clapp)
prc-stiff [ER]

Figure 1.3: Observed RMS velocity and that predicted by a flexible model withε = .25 (Clapp)
prc-flex [ER]

1.4. NULL SPACE AND INTERVAL VELOCITY 11

1.4.2 Bigsolver

The regression (1.18) includes a weighting function, so we need yet another solver module
very much like the regularized and preconditioned solvers that we used earlier. The idea is
essentially the same. Instead of preparing such a solver here, I refer you to the end of the
book for solver_mod on page ??, a big solver that incorporates everything that we need in
the book. Hopefully we will not need to look at solvers again for a while. Modulevrms2int

on the current page was written by Bob Clapp to get the results in Figures 1.1 to 1.3. Notice
that he is usingsolver_mod on page ??.

module vrms2int_mod { # Transform from RMS to interval velocity
use causint
use cgstep_mod
use solver_mod

contains
subroutine vrms2int(niter, eps, weight, vrms, vint) {

integer, intent(in) :: niter # iterations
real, intent(in) :: eps # scaling parameter
real, dimension(:), intent(in out) :: vrms # RMS velocity
real, dimension(:), intent(out) :: vint # interval velocity
real, dimension(:), intent(in) :: weight # data weighting
integer :: st,it,nt
logical, dimension(size(vint)) :: mask
real, dimension(size(vrms)) :: dat ,wt
nt = size(vrms)
do it= 1, nt {

dat(it) = vrms(it) * vrms(it) * it
wt(it) = weight(it)*(1./it) # decrease weight with time
}

mask = .false.; mask(1) = .true. # constrain first point
vint = 0. ; vint(1) = dat(1)
call solver_prec(causint_lop, cgstep, x= vint, dat= dat, niter= niter,

known= mask, x0= vint, wt= wt,
prec=causint_lop, eps= eps, nprec= nt)

call cgstep_close()
st = causint_lop(.false., .false., vint, dat)
do it= 1, nt

vrms(it) = sqrt(dat(it)/it)
vint = sqrt(vint)
}

}

1.4.3 Lateral variations

The analysis above appears one dimensional in depth. Conventional interval velocity esti-
mation builds a velocity-depth model independently at each lateral location. Here we have a
logical path for combining measurements from various lateral locations. We can change the
regularization to something like0 ≈ ∇u. Instead of merely minimizing the vertical gradient
of velocity we minimize its spatial gradient. Luckily we have preconditioning and the helix to
speed the solution.

12 CHAPTER 1. PRECONDITIONING

Likewise the construction of the data quality screenG would naturally involve the full
three-dimensional setting.

1.4.4 Blocky models

Sometimes we seek a velocity model that increases smoothly with depth through our scattered
measurements of good-quality RMS velocities. Other times, we seek a blocky model. (Where
seismic data is poor, a well log could tell us whether to choose smooth or blocky.) Here we see
an estimation method that can choose the blocky alternative, or some combination of smooth
and blocky.

Consider a five layer model, each layer having unit traveltime thickness (so integration
is simply summation). Let the squared interval velocities be (a,b,c,d,e) with strong reliable
reflections at the base of layerc and layere, and weak, incoherent, “bad” reflections at bases
of (a,b,d). Thus we measureV2

c the RMS velocity squared of the top three layers andV2
e that

for all five layers. Since we have no reflection from at the base of the fourth layer, the velocity
in the fourth layer is not measured but a matter for choice. In a smooth linear fit we would
wantd = (c+e)/2. In a blocky fit we would wantd = e.

Our screen for good reflections looks like (0,0,1,0,1) and our screen for bad ones looks
like the complement (1,1,0,1,0). We put these screens on the diagonals of diagonal matrices
G andB. Our fitting goals are:

3V2
c ≈ a+b+c (1.20)

5V2
e ≈ a+b+c+d +e (1.21)

u0 ≈ a (1.22)

0 ≈ −a+b (1.23)

0 ≈ −b+c (1.24)

0 ≈ −c+d (1.25)

0 ≈ −d +e (1.26)

For the blocky solution, we do not want the fitting goal (1.25). Further explanations await
completion of examples.

1.5 INVERSE LINEAR INTERPOLATION

The first example is a simple synthetic test for 1-D inverse interpolation. The input data were
randomly subsampled (with decreasing density) from a sinusoid (Figure 1.4). The forward
operatorL in this case is linear interpolation. We seek a regularly sampled model that could
predict the data with a forward linear interpolation. Sparse irregular distribution of the input
data makes the regularization enforcement a necessity. I applied convolution with the simple
(1,−1) difference filter as the operatorD that forces model continuity (the first-order spline).
An appropriate preconditionerS in this case is recursive causal integration. As expected, pre-

1.5. INVERSE LINEAR INTERPOLATION 13

Figure 1.4: The input data are irregu-
larly sampled. prc-data [ER]

conditioning provides a much faster rate of convergence. Since iteration to the exact solution
is never achieved in large-scale problems, the results of iterative optimization may turn out
quite differently. Bill Harlan points out that the two goals in (1.8) conflict with each other:
the first one enforces “details” in the model, while the second one tries to smooth them out.
Typically, regularized optimization creates a complicated model at early iterations. At first,
the data fitting goal (1.8) plays a more important role. Later, the regularization goal (1.8)
comes into play and simplifies (smooths) the model as much as needed. Preconditioning acts
differently. The very first iterations create a simplified (smooth) model. Later, the data fitting
goal adds more details into the model. If we stop the iterative process early, we end up with
an insufficiently complex model, not in an insufficiently simplified one. Figure 1.5 provides a
clear illustration of Harlan’s observation.

Figure 1.6 measures the rate of convergence by the model residual, which is a distance
from the current model to the final solution. It shows that preconditioning saves many iter-
ations. Since the cost of each iteration for each method is roughly equal, the efficiency of
preconditioning is evident.

The moduleinvint2 on the current page invokes the solvers to make Figures 1.5 and 1.6.
We use convolution withhelicon on page ?? for the regularization and we use deconvolution
with polydiv on page ?? for the preconditioning. The code looks fairly straightforward
except for the oxymoronknown=aa%mis .

module invint2 { # Inverse linear interpolation
use lint1
use helicon # regularized by helix filtering
use polydiv # preconditioned by inverse filtering
use cgstep_mod + solver_mod

contains
subroutine invint1(niter, coord,ord, o1,d1, mm,mmov, eps, aa, doprec) {

logical, intent(in) :: doprec
integer, intent(in) :: niter
real, intent(in) :: o1, d1, eps
real, dimension(:), intent(in) :: ord
type(filter), intent(in) :: aa
real, dimension(:), intent(out) :: mm
real, dimension(:,:), intent(out) :: mmov # model movie
real, dimension(:), pointer :: coord # coordinate
call lint1_init(o1, d1, coord)
if(doprec) { # preconditioning

call polydiv_init(size(mm), aa)

14 CHAPTER 1. PRECONDITIONING

Figure 1.5: Convergence history of inverse linear interpolation. Left: regularization, right:
preconditioning. The regularization operatorA is the derivative operator (convolution with
(1,−1). The preconditioning operatorS is causal integration.prc-conv1 [ER]

1.6. EMPTY BINS AND PRECONDITIONING 15

Figure 1.6: Convergence of the itera-
tive optimization, measured in terms
of the model residual. The “p” points
stand for preconditioning; the “r”
points, regularization. prc-schwab1
[ER]

call solver_prec(lint1_lop, cgstep, niter = niter, x = mm, dat = ord,
prec = polydiv_lop, nprec = size(mm), eps = eps,
xmov = mmov)

call polydiv_close()
} else { # regularization

call helicon_init(aa)
call solver_reg(lint1_lop, cgstep, niter = niter, x = mm, dat = ord,

reg = helicon_lop, nreg = size(mm), eps = eps,
xmov = mmov)

}
call cgstep_close()

}
}

1.6 EMPTY BINS AND PRECONDITIONING

There are at least three ways to fill empty bins. They seem to be all equivalent, though that is
not as obvious as I would like it to be.

The original way in Chapter?? is to restore missing data by ensuring that the restored
data, after specified filtering, has minimum energy, sayAm ≈ 0. Introduce the selection mask
operatorK , a diagonal matrix with ones on the known data and zeros elsewhere (on the missing
data). ThusA(I −K +K)m ≈ 0 or

A(I −K)m ≈ −AKm = −Amk , (1.27)

where we have definedmk to be the data with missing values set to zero bymk = Km .

A second way to find missing data is with the set of goals

Km ≈ mk

εAm ≈ 0
(1.28)

and take the limit as the scalarε → 0. At that limit, we should have the same result as equation
(1.27).

16 CHAPTER 1. PRECONDITIONING

A third way to find missing data is to precondition equation (1.28), namely, try the substi-
tutionm = A−1p.

KA −1p ≈ mk

εp ≈ 0
(1.29)

I think (hope) it is proven later that if we start fromp = 0 and if we are interested in the limit
ε → 0 we can simply forget about the fitting goalεp ≈ 0.

1.6.1 Inverse masking code

The selection (or masking) operatorK is implemented inmask1() on this page.

module mask1 { # masking operator
logical, dimension(:), pointer :: m

#% _init(m)
#% _lop(x, y)

if(adj)
where(m) x += y

else #
where(m) y += x

}

The inverting of the mask operator proceeds much as we inverted the linear interpolation
operator with moduleinvint2 on page 13. The main difference is we swap the selection
operator for the linear interpolation operator. (Philosophically, selection is like binning which
is like nearest-neighbor interpolation.) The modulemis2 on this page, does the job.

module mis2 {
use mask1 + helicon + polydiv + cgstep_mod + solver_mod

contains
fill in missing data by minimizing power out of a given filter.
by helix magic works in any number of dimensions

subroutine mis1(niter, xx, aa, known, doprec) {
logical, intent(in) :: doprec
integer, intent(in) :: niter
type(filter), intent(in) :: aa
logical, dimension(:), intent(in) :: known
real, dimension(:), intent(in out) :: xx # fitting variables
real, dimension(:), allocatable :: dd
logical, dimension(:), pointer :: kk
integer :: nx
nx = size(xx)
if(doprec) { # preconditioned

allocate(kk(nx)); kk = known
call mask1_init(kk)
call polydiv_init(nx, aa)
call solver_prec(mask1_lop, cgstep, niter= niter, x= xx, dat= xx,

prec= polydiv_lop, nprec= nx, eps= 0.)
call polydiv_close()
deallocate(kk)

1.7. SEABEAM: FILLING THE EMPTY BINS WITH A LAPLACIAN 17

} else { # regularized
allocate(dd(nx)); dd = 0.
call helicon_init(aa)
call solver(helicon_lop, cgstep, niter= niter, x= xx, dat= dd,

known = known, x0= xx)
deallocate(dd)

}
call cgstep_close()

}
}

It is instructive to comparemis2 on the preceding page withinvint2 on page 13. Both
are essentially filling empty regions consistant with prior knowledge at particular locations and
minimizing energy of the filtered field. Both use the helix and can be used inN-dimensional
space.

1.7 SEABEAM: FILLING THE EMPTY BINS WITH A LAPLACIAN

Figure 1.7 shows a day’s worth of data1 collected at sea by SeaBeam, an apparatus for mea-
suring water depth both directly under a ship, and somewhat off to the sides of the ship’s track.
The data is measurements of depthh(x, y) at miscellaneous locations in the (x, y)-plane. The

Figure 1.7: Depth of the ocean under
ship tracks. prc-seabin90[ER]

locations are scattered about, according to various aspects of the ship’s navigation and the
geometry of the SeaBeam sonic antenna. Figure 1.7 was made by binning withbin2() on
page ?? and equation (??). The spatial spectra of the noise in the data could be estimated
where tracks cross over themselves. More interesting are the empty mesh locations where
no data is recorded. Here I left empty locations with a background value equal to the mean

1I’d like to thank Alistair Harding for this interesting data set named April 18.

18 CHAPTER 1. PRECONDITIONING

depthh̄. Supposing the roughening operator to be the Laplacian operator∇
2 and using mod-

ule mis2 on page 16 led to the result in Figure 1.8. After many iterations, both regularization
and preconditioning lead us to the same result. After a small number of iterations, we see that
regularization has filled the small holes but it has not reached out far away from the known
data. With preconditioning, it is the opposite.

Figure 1.8: Views of the ocean bottom after filling. (We’ll return to this data in the next chapter
to do a better job.) (Fomel)prc-prcfill [ER,M]

1.8. UNDERDETERMINED LEAST-SQUARES 19

1.8 UNDERDETERMINED LEAST-SQUARES

Construct theoretical data with

d = Fm (1.30)

Assume there are fewer data points than model points and that the matrixFF′ is invertible.
From the theoretical data we estimate a modelm0 with

m0 = F′(FF′)−1d (1.31)

To verify the validity of the estimate, insert the estimate (1.31) into the data modeling equation
(1.30) and notice that the estimatem0 predicts the correct data.

Now we will show that of all possible modelsm that predict the correct data,m0 has the
least energy. (I’d like to thank Sergey Fomel for this clear and simple proof that doesnot use
Lagrange multipliers.) First split (1.31) into an intermediate resultd0 and final result:

d0 = (FF′)−1d (1.32)

m0 = F′d0 (1.33)

Consider another model (x not equal to zero)

m = m0 +x (1.34)

which fits the theoretical data. Sinced = Fm0, we see thatx is a null space vector.

Fx = 0 (1.35)

First we see thatm0 is orthogonal tox because

m′

0x = (F′d0)′x = d′

0Fx = d′

00 = 0 (1.36)

Therefore,

m′m = m′

0m0 +x′x+2x′m0 = m′

0m0 +x′x ≥ m′

0m0 (1.37)

so adding null space tom0 can only increase its energy. In summary, the solutionm0 =

F′(FF′)−1d has less energy than any other model that satisfies the data.

Not only does the theoretical solutionm0 = F′(FF′)−1d have minimum energy, but the
result of iterative descent will too, provided that we begin iterations fromm0 = 0 or anym0

with no null-space component. In (1.36) we see that the orthogonalitym′

0x = 0 does not arise
becaused0 has any particular value. It arises becausem0 is of the formF′d0. Gradient methods
contribute1m = F′r which is of the required form.

20 CHAPTER 1. PRECONDITIONING

1.9 SCALING THE ADJOINT

Given the usual linearized fitting goal between data space and model space,d ≈ Fm, the
simplest image of the model space results from application of the adjoint operatorm̂ = F′d.
UnlessF has no physical units, however, the physical units ofm̂ do not match those ofm,
so we need a scaling factor. The theoretical solutionmtheor = (F′F)−1F′d suggests that the
scaling units should be those of (F′F)−1. We could probe the operatorF or its adjoint with
white noise or a zero-frequency input. Bill Symes suggests we probe with the datad because
it has the spectrum of interest. He proposes we make our image withm̂ = W2F′d where we
choose the weighting function to be

W2
=

diag F′d
diag F′FF′d

(1.38)

which obviously has the correct physical units. (The mathematical functiondiag takes a vector
and lies it along the diagonal of a square matrix.) The weightW2 can be thought of as a
diagonal matrix containing the ratio of two images. A problem with the choice (1.38) is that
the denominator might vanish or might even be negative. The way to stabilize any ratio is
suggested at the beginning of Chapter??; that is, we revise the ratioa/b to

W2
=

diag < ab>

diag < b2 + ε2 >
(1.39)

whereε is a parameter to be chosen, and the angle braces indicate the possible need for local
smoothing.

To go beyond the scaled adjoint we can useW as a preconditioner. To useW as a pre-
conditioner we define implicitly a new set of variablesp by the substitutionm = Wp. Then
d ≈ Fm = FWp. To findp instead ofm, we do CD iteration with the operatorFW instead of
with F. As usual, the first step of the iteration is to use the adjoint ofd ≈ FWp to form the
imagep̂ = (FW)′d. At the end of the iterations, we convert fromp back tom with m = Wp.
The result after the first iteration̂m = Wp̂ = W(FW)′d = W2F′d turns out to be the same as
Symes scaling.

By (1.38),W has physical units inverse toF. Thus the transformationFW has no units
so thep variables have physical units of data space. Experimentalists might enjoy seeing the
solutionp with its data units more than viewing the solutionm with its more theoretical model
units.

The theoretical solution for underdetermined systemsm = F′(FF′)−1d suggests an alter-
nate approach using insteadm̂ = F′W2

dd. A possibility forW2
d is

W2
d =

diag d
diag FF′d

(1.40)

Experience tells me that a broader methodology is needed. Appropriate scaling is required
in both data space and model space. We need something that includes a weight for each space,
Wm andWd wherem̂ = WmF′Wdd.

1.10. ACKNOWLEDGEMENTS 21

I have a useful practical example (stacking inv(z) media) in another of my electronic
books (BEI), where I found bothWm andWd by iterative guessing. But I don’t know how to
give you a general strategy. I feel this is a major unsolved(?) opportunity.

1.10 ACKNOWLEDGEMENTS

Nearly everything I know about null spaces I learned from Dave Nichols, Bill Symes, Bill
Harlan, and Sergey Fomel.

268 CHAPTER 1. PRECONDITIONING

Index

index, 23
invint2 module, 13

mask1 operator module, 16
mis2 module, 16
module

invint2 , Inverse linear interpolation,
13

mis2 , Missing data interpolation with
and without preconditioning, 16

precsolver , Preconditioned solver, 6
vrms2int , Converting RMS to inter-

val velocity, 11

operator
mask1, copy under mask, 16

precsolver module, 6

vrms2int module, 11

269

270 INDEX

