Chapter 1

Preconditioning

When | first realized that practical imaging methods in widespread industrial use amounted
merely to the adjoint of forward modeling, | (and others) thought an easy way to achieve
fame and fortune would be to introduce the first steps towards inversion along the lines of
Chapter??. Although inversion generally requires a prohibitive number of steps, | felt that
moving in the gradient direction, the direction of steepest descent, would move us rapidly in
the direction of practical improvements. This turned out to be optimistic. It was too slow. But
then | learned about the conjugate gradient method that spectacularly overcomes a well-known
speed problem with the method of steepest descents. | came to realize that it was still too slow.
| learned this by watching the convergence in Figure 1.5. This led me to the helix method in
Chapter??. Here we’ll see how it speeds many applications.

We'll also come to understand why the gradient is such a poor direction both for steepest
descent and for conjugate gradients. An indication of our path is found in the contrast between
and exact solutiom = (A’A)~1A’d and the gradienam = A’d (which is the first step starting
from m = 0). Notice thatAm differs fromm by the factor A’A)~L. This factor is sometimes
called a spectrum and in some situations it literally is a frequency spectrum. In these cases,
Am simply gets a different spectrum from and many iterations are required to fix it. Here
we'll find that for many problems, “preconditioning” with the helix is a better way.

1.1 PRECONDITIONED DATA FITTING

Iterative methods (like conjugate-directions) can sometimes be accelerated by a change of
variables. The simplest change of variable is called a “trial solution”. Formally, we write the
solution as

m = Sp (1.1)

wherem is the map we seek, columns of the ma8iare “shapes” that we like, and coefficients
in p are unknown coefficients to select amounts of the favored shapes. The vapablkes
often called the “preconditioned variables”. It is not necessarySim an invertible matrix,

1

2 CHAPTER 1. PRECONDITIONING

but we'll see later that invertibility is helpful. Take this trial solution and insert it into a typical
fitting goal

0O ~ Fm-—-d (1.2)
and get
0 ~ FSp-d (1.3)

We pass the operat®iS to our iterative solver. After finding the best fitting we merely
evaluatem = Spto get the solution to the original problem.

We hope this change of variables has saved effort. For each iteration, there is a little more
work: Instead of the iterative application BfandF we have iterative application &S and
SF'. Our hope is that the number of iterations decreases because we are clever, or because we
have been lucky in our choice & Hopefully, the extra work of the preconditioner operator
Sis not large compared t. If we should be so lucky th& = F~1, then we get the solution
immediately. Obviously we would try any guess wit~ F~1. Where | have known sucf
matrices, | have often found that convergence is accelerated, but not by much. Sometimes it
is worth usingFS for a while in the beginning, but later it is cheaper and faster to use only
F. A practitioner might regard the guess®as prior information, like the guess of the initial
modelmg.

For a square matri$, the use of a preconditioner should not change the ultimate solu-
tion. TakingSto be a wide rectangular matrix, reduces the number of adjustable parameters,
changes the solution, gets it quicker, but lower resolution.

1.1.1 Preconditioner with a starting guess

In many applications, for many reasons, we have a starting gugstthe solution. You might
worry that you could not find the starting preconditioned variggle: S—*mg because you did

not know the inverse d. The way to avoid this problem is to reformulate the problem in terms
of a new variableh wherem = m + mg. Then0~ Fm —d become® ~ Fm — (d — Fmg) or

0~ Fm —d. Thus we have accomplished the goal of taking a problem with a nonzero starting
model and converting it a problem of the same type with a zero starting model. Thus we do
not need the inverse &because the iteration starts fraim= 0 sopy = 0.

1.2 PRECONDITIONING THE REGULARIZATION

The basic formulation of a geophysical estimation problem consists of settihgaugoals,
one for data fitting, and the other for model shaping. With two goals, preconditioning is
somewhat different. The two goals may be written as:

0 ~ Fm-d (1.4)
0 ~ Am (1.5)

1.2. PRECONDITIONING THE REGULARIZATION 3

which defines two residuals, a so-called “data residual” and a “model residual” that are usually
minimized by conjugate-gradient, least-squares methods.

To fix ideas, let us examine a toy example. The data and the first three rows of the matrix
below are random numbers truncated to integers. The model roughening opera@first
differencing operator times 100.

d(m) F(m,n) iter Norm
41. -55. -90. -24. -13. -73. 61. -27. -19. 23. -55. 1 20.00396538

33. 8. -86. 72. 87. -41. -3. -29. 29. -66. 50. 2 12.14780140

-58. 84. -49. 80. 44. -52. -51. 8. 86. 77. 50. 3 8.94393635
0. 100. 0. 0. O 0 0 0 0 0 O 4 6.04517126
0. -100. 100. 0. ©O0. 0. 0. 0 0 0 O 5 2.64737511
0. 0.-100. 100. 0. 0. 0. 0. 0. 0. 0. 6 0.79238468
0. 0. 0.-100. 100. 0. 0 0. 0. 0. 0. 7 0.46083349
0. 0. 0 0.-100. 100. 0. 0. 0. 0. 0. 8 0.08301232
0. 00 0. O 0.-100. 100. 0. 0. 0. O. 9 0.00542009
0. 00 0 0 O 0.-100. 100. 0. 0. O. 10 0.00000565
0. 0. O 0. 0. 0. 0.100. 100. 0. O. 11 0.00000026
0. 0. O 0 0 0. 0. 0.-100. 100. O. 12 0.00000012
0. 0. 0 0 0 0. 0. 0. 0.-100. 100. 13 0.00000000

Notice at the tenth iteration, the residual suddenly plunges 4 significant digits. Since there
are ten unknowns and the matrix is obviously full-rank, conjugate-gradient theory tells us to
expect the exact solution at the tenth iteration. This is the first miracle of conjugate gradients.
(The residual actually does not drop to zero. What is printed imNthen column is the square
root of the sum of the squares of the residual components #ttheth iteration minus that
at the last interation.)

1.2.1 The second miracle of conjugate gradients

The second miracle of conjugate gradients is exhibited below. The data and data fitting matrix
are the same, but the model damping is simplified.

d(m) F(m,n) iter Norm
41. -55. -90. -24. -13. -73. 61. -27. -19. 23. -55. 1 3.64410686

33. 8. -86. 72. 87.-41. -3. -29. 29. -66. 50. 2 0.31269890
84. -49. 80. 44. -52. -51. 8. 86. 77. 50. 3 -0.00000021
100. 0. 0. 4 -0.00000066
100. 0. -0.00000080
100. -0.00000065
-0.00000088
-0.00000074
9 -0.00000035
10 -0.00000037
0. 100. 11 -0.00000018
0. 0. 100. 12 0.00000000
0. 0. 0. 100. 13 0.00000000

o
@

coco
©cocoo

100.

coo0oQo
o~ o

100.

©cocoooo

100.

©Ooo0ooo0o00o

100.

©Cocoo0o0o000o
©Coo0o0o0o0o0o00o

COCO0O0O00O000O0
e e e e

©Coo0o0o0o0o00o
©Cooo0oo0o00o
©coooo0o

©coooo
cocoo

4 CHAPTER 1. PRECONDITIONING

Even though the matrix is full-rank, we see the residual drop about 6 decimal places after
the third iteration! This convergence behavior is well known in the computational mathemat-
ics literature. Despite its practical importance, it doesn’t seem to have a name or identified
discoverer. So | call it the “second miracle.”

Practitioners usually don't like the identity operator for model-shaping. Generally they
prefer to penalize wiggliness. For practitioners, the lesson of the second miracle of conjugate
gradients is that we have a choice of many iterations, or learning to transform independent
variables so that the regularization operator becomes an identity matrix. Basically, such a
transformation reduces the iteration count from something about the size of the model space
to something about the size of the data space. Such a transformation is called preconditioning.
In practice, data is often accumulated in bins. Then the iteration count is reduced (in principle)
to the count of full bins and should be independent of the count of the empty bins. This allows
refining the bins, enhancing the resolution.

More generally, the model go@l~ Am introduces a roughening operator like a gradient,
Laplacian (and in chapter 6 a Prediction-Error Filter (PEF)). Thus the model goal is usually a
filter, unlike the data-fitting goal which involves all manner of geometry and physics. When
the model goal is a filter its inverse is also a filter. Of course this includes multidimensional
filters with a helix.

The preconditioning transformation = Sp gives us

FSp—d

A% (1.6)

& &

0
0
The operatoA is a roughener whil& is a smoother. The choices of bothandS are some-

what subjective. This suggests that we elimirataltogether bydefiningit to be proportional
to the inverse 08, thusAS = I. The fitting goals become

0
0

FSp—d
€ep

& &R

(1.7)

which enables us to benefit from the “second miracle”. After fingpngve obtain the final
model withm = Sp.

Deconvolution on a helix is an all-purpose preconditioning strategy for multidimensional
model regularization.

1.2.2 Importance of scaling

Another simple toy example shows us the importance of scaling. We use the same example as
above except that theth column is multiplied by /10 which means thieth model variable

has been divided biy/10.

d(m) F(m,n) iter Norm

1.2. PRECONDITIONING THE REGULARIZATION 5

41. -6. -18. -7. -5. -36. 37. -19. -15. 21. -55. 1 11.59544849

33. 1. -17. 22. 35. -20. -2. -20. 23. -59. 50. 2 6.97337770

-58. 8. -10. 24. 18. -26. -31. 6. 69. 69. 50. 3 5.64414406
0. 10. 0. 0. 0 0. 0. 0. 0. 0. 0. 4 432118177
0. 0. 20. 0. 0 0. 0. 0. 0. 0. 0. 5 2.64755201
0. 0. 0. 30. 0. 0. 0. 0. 0. 0. 0. 6 2.01631355
0. 0. 0. 0. 4o0. 0. 0. 0. 0. 0. 0. 7 1.23219979
0. 0. 0. 0. 0. 50. 0. 0. 0. 0. 0. 8 0.36649203
0. 0. 0. 0. 0 0. 60. 0. 0. 0. 0. 9 0.28528941
0. 0. 0. 0. 0 0. 0. 70. 0. 0. 0. 10 0.06712411
0. 0. 0. 0. 0 0. 0. 0. 80. 0. 0. 11 0.00374284
0. 0. 0. 0. 0 0. 0. 0. 0. 90. 0. 12 -0.00000040
0. 0. 0. 0. 0 0. 0. 0. 0. 0. 100. 13 0.00000000

We observe that solving the same problem for the scaled variables has required a severe in-
crease in the number of iterations required to get the solution. We lost the benefit of the second
CG miracle. Even the rapid convergence predicted for the 10-th iteration is delayed until the
12-th.

1.2.3 Statistical interpretation

This book is not a statistics book. Never-the-less, many of you have some statistical knowledge
that allows you a statistical interpretation of these views of preconditioning.

A statistical concept is that we can combine many streams of random numbers into a
composite model. Each stream of random numbers is generally taken to be uncorrelated with
the others, to have zero mean, and to have the same variance as all the others. This is often
abbreviated as 11D, denoting Independent, Identically Distributed. Linear combinations like
filtering and weighting operations of these IID random streams can build correlated random
functions much like those observed in geophysics. A geophysical practitioner seeks to do
the inverse, to operate on the correlated unequal random variables and create the statistical
ideal random streams. The identity matrix required for the “second miracle”, and our search
for a good preconditioning transformation are related ideas. The relationship will become
more clear in chapter 6 when we learn how to estimate the best roughening opees@
prediction-error filter.

Two philosophies to find a preconditioner:
1. Dream up a smoothing operafar

2. Estimate a prediction-error filtéx, and then use its invers= A~

The outstanding acceleration of convergence by preconditioning suggests that the philos-
ophy of image creation by optimization has a dual orthonormality: First, Gauss (and common
sense) tells us that the data residuals should be roughly equal in size. Likewise in Fourier
space they should be roughly equal in size, which means they should be roughly white, i.e.

6 CHAPTER 1. PRECONDITIONING

orthonormal. (I use the word “orthonormal”’ because white means the autocorrelation is an im-
pulse, which means the signal is statistically orthogonal to shifted versions of itself.) Second,
to speed convergence of iterative methods, we need a whiteness, another orthonormality, in the
solution. The map image, the physical function that we seek, might not be itself white, so we
should solve first for another variable, the whitened map image, and as a final step, transform
it to the “natural colored” map.

1.2.4 The preconditioned solver

Summing up the ideas above, we start from fitting goals

0 ~ Fm-d
0 ~ Am (1.8)
and we change variables framto p usingm = A=1p
0 ~ Fm—d = FA™! p-d
0 ~ Am = | p (1.9)

Preconditioning means iteratively fitting by adjusting thevariables and then finding the
model by usingn = A~p. A new reusable preconditioned solver is the mogue_solver

on this page. The variablein prec_solver refers tom. Likewise the modeling operatér
is calledoper and the smoothing operatér? is calledprec . Details of the code are only
slightly different from the regularized solvexg_solver on page ??.

module prec_solver {

logical, parameter, private : T = .true., F = .false.
contains
subroutine solver_prec(oper, solv, prec, nprec, x, dat, niter, eps, p0) {
optional o pOo
interface {

integer function oper(adj, add, x, dat) {
logical, intent (in) :: adj, add

real, dimension (:) : X, dat

}

integer function solv(forget, x, g, rr, gg) {
logical .. forget
real, dimension (}) :: x, g, rr, gg

}

integer function prec(adj, add, x, dat) {
logical, intent (in) :: adj, add

real, dimension (:) : x, dat

}
}
real, dimension (:), intent (in) : dat, pO # data, initial
real, dimension (:), intent (out) :: X # solution
real, intent (in) :: eps # scaling
integer, intent (in) :: niter, nprec # iterations, size
real, dimension (nprec) g p # gradient, precond

real, dimension (size (dat) + nprec), target :: rr, gg # residual, conj grad

1.3. OPPORTUNITIES FOR SMART DIRECTIONS 7

real, dimension (:), pointer :ord, rm, gd, gm
integer 0, statl, stat?2, stat
rm =>rr (1 : nprec) ; rd => rr (1 + nprec ?) # model and data resids
gm => gg (1 : nprec) ; gd => gg (1 + nprec :) # model and data grads
rd = -dat # initialize r_d
if(present(p0)) {
statl = prec(F, F, p0, x) #x=Sp
stat2 = oper(F, T, x, rd) #r.d =1L x - dat
p = p0 ; rm = pO*eps} # start with pO
else { p=20.;rm=0} # start with zero
do i = 1, niter {
stat2 = oper(T, F, x, rd)
statl = prec(T, F, g, X) #g9g=S L rd
g = g + eps*rm #g=S L rd+epsl|rm
statl = prec(F, F, g, X)
stat2 = oper(F, F, x, gd) #g9gd=LSg
gm = eps*g #9g.m=epslg
stat = solv (F, p, g, rr, gg) # step in p and rr
}
statl = prec(F, F, p, X) #Xx=8Sp

1.3 OPPORTUNITIES FOR SMART DIRECTIONS

Recall the fitting goals (1.10)

A~ — _ — -1 _
o~ Am 1 (10
Without preconditioning we have the search direction
AMpg = [F A][:H (1.11)
and with preconditioning we have the search direction
APgood = [(FA7YY |][rr,:] (1.12)

The essential feature of preconditioning is not that we perform the iterative optimization in
terms of the variablp. The essential feature is that we use a search direction that is a gradient
with respect tgp’ notm’. UsingAm = p we haveAAm = Ap. This enables us to define a
good search direction in model space.

Amgood == A_lApgood == A_l(A_l)/F/rd +A_1rm (113)
Define the gradient by = F'r4 and notice that, = p.

AMgoog = AHA™Y g+m (1.14)

8 CHAPTER 1. PRECONDITIONING

The search direction (1.14) shows a positive-definite operator scaling the gradient. Each
component of any gradient vector is independent of each other. All independently point a
direction for descent. Obviously, each can be scaled by any positive number. Now we have
found that we can also scale a gradient vector by a positive definite matrix and we can still
expect the conjugate-gradient algorithm to descend, as always, to the “exact” answer in a finite
number of steps. This is because modifying the search directionfwittA 1) is equivalent
to solving a conjugate-gradient problemgn

1.4 NULL SPACE AND INTERVAL VELOCITY

A bread-and-butter problem in seismology is building the velocity as a function of depth (or
vertical travel time) starting from certain measurements. The measurements are described
elsewhere (BEI for example). They amount to measuring the integral of the velocity squared
from the surface down to the reflector. It is known as the RMS (root-mean-square) velocity.
Although good quality echos may arrive often, they rarely arrive continuously for all depths.
Good information is interspersed unpredictably with poor information. Luckily we can also
estimate the data quality by the “coherency” or the “stack energy”. In summary, what we get
from observations and preprocessing are two functions of travel-time depth, (1) the integrated
(from the surface) squared velocity, and (2) a measure of the quality of the integrated velocity
measurement. Some definitions:

d is a data vector whose components range over the vertical traveltime degld whose
component values contain the scaled RMS velocity squavégS/Ar wheret /At is
the index on the time axis.

W is a diagonal matrix along which we lay the given measure of data quality. We will use it
as a weighting function.

C is the matrix of causal integration, a lower triangular matrix of ones.
D is the matrix of causal differentiation, namely= C~.

u is a vector whose components range over the vertical traveltime deptid whose com-
ponent values contain the interval velocity squargd,.-

From these definitions, under the assumption of a stratified earth with horizontal reflectors
(and no multiple reflections) the theoretical (squared) interval velocities enable us to define
the theoretical (squared) RMS velocities by

Cu = d (1.15)
With imperfect data, our data fitting goal is to minimize the residual

0 ~ W[Cu—d] (1.16)

1.4. NULL SPACE AND INTERVAL VELOCITY 9

To find the interval velocity where there is no data (where the stack power theoretically
vanishes) we have the “model damping” goal to minimize the wigglipes$ the squared
interval velocityu.

0O ~ Du = p (1.17)

We precondition these two goals by changing the optimization variable from interval ve-
locity squaredu to its wigglinessp. Substitutingu = Cp gives the two goals expressed as a
function of wigglines.

~ W[C%p—d] (1.18)

0
0 ~ ep (1.19)

1.4.1 Balancing good data with bad

Choosing the size of chooses the stiffness of the curve that connects regions of good data.
Our first test cases gave solutions that we interpreted to be too stiff at early times and too flexi-
ble at later times. This leads to two possible ways to deal with the problem. One way modifies
the model shaping and the other modifies the data fitting. The program below weakens the
data fitting weight with time. This has the same effect as stiffening the model shaping with
time.

CMY Gather Jemblance ycan Weght

(oes)euwura
=
(ces)ewura

=

= T T T T

= — —— T T T T T
04 08 12 16 2 24 28 32 12 14 16 18 2 22 24 2§ 01 02 03 04 05
offset(km) Velocity(km/sec) Amplitude

Figure 1.1: Raw CMP gather (left), Semblance scan (middle), and semblance value used for

weighting function (right). (Clapp)prc-clapp [ER]

10 CHAPTER 1. PRECONDITIONING

RMS Velomty Interval VElOCILy
[e] O A1
observed
predicted - - -
g g
0] (0]
v w®
o]
L L
(O (O
14 1.6 1.8 2 R.2 2.4 2.6 1.6 2 R.4 2.8 3.2
velocity(km/sec) velocity(km/sec)

Figure 1.2: Observed RMS velocity and that predicted by a stiff model aithd. (Clapp)

[pre-stiff|[ER]

RMS Velocity Interval velocity

observed
predicted - - -

(oes)owury
a

(oes)owury
=1

T T T T T T T T T

14 1.6 1.8 2 2.2 2.4 2.6 1.6 2 24 2.8 32 3.6
velocity(km/sec) velocity(km/sec)

Figure 1.3: Observed RMS velocity and that predicted by a flexible modekwt25 (Clapp)

o fex [ER)

1.4. NULL SPACE AND INTERVAL VELOCITY 11

1.4.2 Bigsolver

The regression (1.18) includes a weighting function, so we need yet another solver module
very much like the regularized and preconditioned solvers that we used earlier. The idea is
essentially the same. Instead of preparing such a solver here, | refer you to the end of the
book forsolver_mod on page ?7?, a big solver that incorporates everything that we need in
the book. Hopefully we will not need to look at solvers again for a while. Modute2int

on the current page was written by Bob Clapp to get the results in Figures 1.1 to 1.3. Notice
that he is usingolver_mod on page ??.

module vrms2int_mod { # Transform from RMS to interval velocity
use causint
use cgstep_mod
use solver_mod

contains
subroutine vrms2int(niter, eps, weight, vrms, vint) {

integer, intent(in) 1 niter # iterations

real, intent(in) eps # scaling parameter

real, dimension(:), intent(in out) :: vrms # RMS velocity

real, dimension(:), intent(out) ovint # interval velocity

real, dimension(:), intent(in) ;. weight # data weighting

integer 1ostit,nt

logical, dimension(size(vint)) : mask

real, dimension(size(vrms)) © dat ,wt

nt = size(vrms)

do it= 1, nt {
dat(it) = vrms(it) * vrms(it) * it
wt(it) = weight(it)*(1./it) # decrease weight with time
}

mask = .false.; mask(1) = .true. # constrain first point

vint = 0. ; vint(1) = dat(1)

call solver_prec(causint_lop, cgstep, x= vint, dat= dat, niter= niter,
known= mask, x0= vint, wt= wt,
prec=causint_lop, eps= eps, nprec= nt)

call cgstep_close()

st = causint_lop(.false., .false., vint, dat)

do it= 1, nt

vrms(it) = sqrt(dat(it)/it)
vint = sqrt(vint)

}

1.4.3 Lateral variations

The analysis above appears one dimensional in depth. Conventional interval velocity esti-
mation builds a velocity-depth model independently at each lateral location. Here we have a
logical path for combining measurements from various lateral locations. We can change the
regularization to something liké~ Vu. Instead of merely minimizing the vertical gradient

of velocity we minimize its spatial gradient. Luckily we have preconditioning and the helix to
speed the solution.

12 CHAPTER 1. PRECONDITIONING

Likewise the construction of the data quality scr&&mwould naturally involve the full
three-dimensional setting.

1.4.4 Blocky models

Sometimes we seek a velocity model that increases smoothly with depth through our scattered
measurements of good-quality RMS velocities. Other times, we seek a blocky model. (Where

seismic data is poor, a well log could tell us whether to choose smooth or blocky.) Here we see

an estimation method that can choose the blocky alternative, or some combination of smooth
and blocky.

Consider a five layer model, each layer having unit traveltime thickness (so integration
is simply summation). Let the squared interval velocitiesd®,(,d, e) with strong reliable
reflections at the base of layelnd layere, and weak, incoherent, “bad” reflections at bases
of (a,b,d). Thus we measuré? the RMS velocity squared of the top three layers ¥gdhat
for all five layers. Since we have no reflection from at the base of the fourth layer, the velocity
in the fourth layer is not measured but a matter for choice. In a smooth linear fit we would
wantd = (c+€)/2. In a blocky fit we would wand = e.

Our screen for good reflections looks like (0,0,1,0,1) and our screen for bad ones looks
like the complement (1,1,0,1,0). We put these screens on the diagonals of diagonal matrices
G andB. Our fitting goals are:

3V2 ~ a+b+c (1.20)
5V2 ~ a+b+c+d+e (1.21)
U =~ a (1.22)
0 ~ —a+b (1.23)
0 ~ —b+c (1.24)
0 ~ —c+d (1.25)
0 —d+e (1.26)

For the blocky solution, we do not want the fitting goal (1.25). Further explanations await
completion of examples.

1.5 INVERSE LINEAR INTERPOLATION

The first example is a simple synthetic test for 1-D inverse interpolation. The input data were
randomly subsampled (with decreasing density) from a sinusoid (Figure 1.4). The forward
operatorL in this case is linear interpolation. We seek a regularly sampled model that could
predict the data with a forward linear interpolation. Sparse irregular distribution of the input
data makes the regularization enforcement a necessity. | applied convolution with the simple
(1,—1) difference filter as the operatbrthat forces model continuity (the first-order spline).

An appropriate precondition&in this case is recursive causal integration. As expected, pre-

1.5. INVERSE LINEAR INTERPOLATION 13

Figure 1.4: The input data are irregu- ‘ ‘ ‘

larly sampled. | prc-datg [ER] |

conditioning provides a much faster rate of convergence. Since iteration to the exact solution
is never achieved in large-scale problems, the results of iterative optimization may turn out
quite differently. Bill Harlan points out that the two goals in (1.8) conflict with each other:
the first one enforces “details” in the model, while the second one tries to smooth them out.
Typically, regularized optimization creates a complicated model at early iterations. At first,
the data fitting goal (1.8) plays a more important role. Later, the regularization goal (1.8)
comes into play and simplifies (smooths) the model as much as needed. Preconditioning acts
differently. The very first iterations create a simplified (smooth) model. Later, the data fitting
goal adds more details into the model. If we stop the iterative process early, we end up with
an insufficiently complex model, not in an insufficiently simplified one. Figure 1.5 provides a
clear illustration of Harlan’s observation.

Figure 1.6 measures the rate of convergence by the model residual, which is a distance
from the current model to the final solution. It shows that preconditioning saves many iter-
ations. Since the cost of each iteration for each method is roughly equal, the efficiency of
preconditioning is evident.

The modulenvint2 on the current page invokes the solvers to make Figures 1.5 and 1.6.
We use convolution withelicon on page ?? for the regularization and we use deconvolution
with polydiv on page ?? for the preconditioning. The code looks fairly straightforward
except for the oxymoroknown=aa%mis .

module invint2 { # Inverse linear interpolation

use lintl
use helicon # regularized by helix filtering
use polydiv # preconditioned by inverse filtering
use cgstep_mod + solver_mod
contains
subroutine invintl(niter, coord,ord, 0l,d1, mm,mmov, eps, aa, doprec) {
logical, intent(in) :: doprec
integer, intent(in) :: niter
real, intent(in) : ol, di, eps
real, dimension(:), intent(in) : ord
type(filter), intent(in) : aa
real, dimension(:), intent(out) :: mm
real, dimension(:,:), intent(out) :: mmov # model movie
real, dimension(:), pointer :: coord # coordinate
call lintl_init(ol, d1, coord)
if(doprec) { # preconditioning

call polydiv_init(size(mm), aa)

14 CHAPTER 1. PRECONDITIONING

Regularization Precon ditioning

S TR T
1B SNPTNY

o V/\M/\NA e M
[~y Ny

MWM i
TV VU NV VU

Figure 1.5: Convergence his y f e linear in terpolation. Left: g ular right:
precon ditioning. Th g ular p #&1 the derivativ p rator (co It Wth

(1,—1). The preconditioning p t&r sal integrationprc-convl [ER]

1.6. EMPTY BINS AND PRECONDITIONING 15

Model Residual Vector Length

Figure 1.6: Convergence of the itera-
tive optimization, measured in terms
of the model residual. The “p” points
stand for preconditioning; the “r’

points, regularization 1" ™
[ER] o] 4 '“‘W"“""'""'“'“"m..m,.m,w
PH}R}“.\ .

T T u P ? ? 7 P P ? T
0 10 20 30 40 50 60 70 80 90 100
Tterations

G'e

S1
o
E

S0
It

call solver_prec(lintl_lop, cgstep, niter = niter, x = mm, dat = ord,
prec = polydiv_lop, nprec = size(mm), eps = eps,
Xmov = mmov)
call polydiv_close()
} else { # regularization
call helicon_init(aa)
call solver_reg(lintl_lop, cgstep, niter = niter, x = mm, dat = ord,
reg = helicon_lop, nreg = size(mm), eps = eps,
Xmov = mmov)

}

call cgstep_close()

}
}

1.6 EMPTY BINS AND PRECONDITIONING

There are at least three ways to fill empty bins. They seem to be all equivalent, though that is
not as obvious as | would like it to be.

The original way in Chapte?? is to restore missing data by ensuring that the restored
data, after specified filtering, has minimum energy,Aay~ 0. Introduce the selection mask
operatoiK, a diagonal matrix with ones on the known data and zeros elsewhere (on the missing
data). ThuA(l —K+K)m~O0or

Al—-Km ~ —-AKm = —-Amy, (2.27)

where we have definadg to be the data with missing values set to zerarigy= Km.

A second way to find missing data is with the set of goals

Km
eAm

Mg

0 (1.28)

& X

and take the limit as the scakar 0. At that limit, we should have the same result as equation
(1.27).

16 CHAPTER 1. PRECONDITIONING

A third way to find missing data is to precondition equation (1.28), namely, try the substi-
tutionm = A~ 1p.

KA1
€

& X

m
g o (1.29)

I think (hope) it is proven later that if we start fro;m= 0 and if we are interested in the limit
e — 0 we can simply forget about the fitting gaad ~ 0.

1.6.1 Inverse masking code

The selection (or masking) operatdris implemented imask1() on this page.

module maskl { # masking operator
logical, dimension(:), pointer :: m
#% _init(m)
#% _lop(X, V)
if(adj)
where(m) x +=y
else #
where(m) y += x

The inverting of the mask operator proceeds much as we inverted the linear interpolation
operator with modulénvint2 on page 13. The main difference is we swap the selection
operator for the linear interpolation operator. (Philosophically, selection is like binning which
is like nearest-neighbor interpolation.) The moduie2 on this page, does the job.

module mis2 {
use maskl + helicon + polydiv + cgstep_mod + solver_mod
contains
fill in missing data by minimizing power out of a given filter.
by helix magic works in any number of dimensions
subroutine mis1(niter, xx, aa, known, doprec) {

logical, intent(in) :: doprec

integer, intent(in) o niter

type(filter), intent(in) ;aa

logical, dimension(:), intent(in) - known

real, dimension(:), intent(in out) : XX # fitting variables
real, dimension(:), allocatable odd

logical, dimension(:), pointer i kk

integer Ionx

nx = size(xx)

if(doprec) { # preconditioned

allocate(kk(nx)); kk = known

call maskl_init(kk)

call polydiv_init(nx, aa)

call solver_prec(maskl_lop, cgstep, niter= niter, x= xx, dat= Xxx,
prec= polydiv_lop, nprec= nx, eps= 0.)

call polydiv_close()

deallocate(kk)

1.7. SEABEAM: FILLING THE EMPTY BINS WITH A LAPLACIAN 17

} else { # regularized
allocate(dd(nx)); dd = 0.
call helicon_init(aa)
call solver(helicon_lop, cgstep, niter= niter, x= xx, dat= dd,
known = known, x0= xx)
deallocate(dd)
}

call cgstep_close()

}
}

It is instructive to comparenis2 on the preceding page withvint2 on page 13. Both
are essentially filling empty regions consistant with prior knowledge at particular locations and
minimizing energy of the filtered field. Both use the helix and can be usétdimensional
space.

1.7 SEABEAM: FILLING THE EMPTY BINS WITH A LAPLACIAN

Figure 1.7 shows a day’s worth of dateollected at sea by SeaBeam, an apparatus for mea-
suring water depth both directly under a ship, and somewhat off to the sides of the ship’s track.
The data is measurements of deptl, y) at miscellaneous locations in the, {)-plane. The

~113.1 ~113 ~112.9-112.8-112.7-112.6

\

o

s

5o

Figure 1.7: Depth of the ocean under E i
ship tracks. | prc-seabin9Q[ER] s o
o ©

\

o

\

o

April 18 Binned

locations are scattered about, according to various aspects of the ship’s navigation and the
geometry of the SeaBeam sonic antenna. Figure 1.7 was made by binningn2ph on

page ?? and equatioR?). The spatial spectra of the noise in the data could be estimated
where tracks cross over themselves. More interesting are the empty mesh locations where
no data is recorded. Here | left empty locations with a background value equal to the mean

11'd like to thank Alistair Harding for this interesting data set named April 18.

18 CHAPTER 1. PRECONDITIONING

depthﬁ. Supposing the roughening operator to be the Laplacian opévatand using mod-
ulemis2 on page 16 led to the result in Figure 1.8. After many iterations, both regularization
and preconditioning lead us to the same result. After a small number of iterations, we see that
regularization has filled the small holes but it has not reached out far away from the known
data. With preconditioning, it is the opposite.

-113.1 -113 -112.9 -1188 —-112.7 -112.6 -113.1 -113 -112.9 -1128 -112.7 -—11%.¢

LGl —
L'GT—

65S1l— 8G4l1—
9T — 68'ST— 8GT—

91—

1'91—
1°'91—

Regularization 400 Preconditioning 400

-113.1 -113 -1129 -1128 -112.7 -112.6 -113.1 -113 -112.9 -1128 -112.7 -112.€

LGl —
L'GT—

8461 —
8'GT—

6GL—
6'GI—

91—
9T —

191 —
1°91—

Regularization 20 Preconditioning 20

Figure 1.8: Views of the ocean bottom after filling. (We’ll return to this data in the next chapter

to do a better job.) (Fomel)prc-prcfill| [ER,M]

1.8. UNDERDETERMINED LEAST-SQUARES 19

1.8 UNDERDETERMINED LEAST-SQUARES

Construct theoretical data with
d = Fm (1.30)

Assume there are fewer data points than model points and that the fB&trig invertible.
From the theoretical data we estimate a madghith

mg = F(FF)d (1.31)

To verify the validity of the estimate, insert the estimate (1.31) into the data modeling equation
(1.30) and notice that the estimatg predicts the correct data.

Now we will show that of all possible modets that predict the correct datmg has the
least energy. (I'd like to thank Sergey Fomel for this clear and simple proof thatndbese
Lagrange multipliers.) First split (1.31) into an intermediate redgiind final result:

do = (FF)™id (1.32)
Mo = F/do (133)

Consider another modet ot equal to zero)
m = mp+X (1.34)
which fits the theoretical data. Sinde= Fmg, we see thax is a null space vector.
Fx = 0 (1.35)
First we see thamhg is orthogonal tox because
mx = (Fdg)x = difFx = d0 = 0 (1.36)
Therefore,
mm = mymo+XXx+2Xmg = mgmo+XXx > mymo (1.37)

so adding null space tmg can only increase its energy. In summary, the solutign=
F'(FF)~1d has less energy than any other model that satisfies the data.

Not only does the theoretical solutiong = F'(FF')~1d have minimum energy, but the
result of iterative descent will too, provided that we begin iterations fnagn= 0 or anymg
with no null-space component. In (1.36) we see that the orthogomality= 0 does not arise
becausely has any particular value. It arises becanmgés of the formF'dg. Gradient methods
contributeAm = F'r which is of the required form.

20 CHAPTER 1. PRECONDITIONING

1.9 SCALING THE ADJOINT

Given the usual linearized fitting goal between data space and model shacem, the
simplest image of the model space results from application of the adjoint opgratdf’d.
UnlessF has no physical units, however, the physical unitshoflo not match those ah,
so we need a scaling factor. The theoretical solutigrsor = (F'F)~1F'd suggests that the
scaling units should be those d¥F)~1. We could probe the operatéror its adjoint with
white noise or a zero-frequency input. Bill Symes suggests we probe with thd Batause
it has the spectrum of interest. He proposes we make our imageiw#hW2F'd where we
choose the weighting function to be

diag Fd

w2 —_—
diag FFFd

(1.38)
which obviously has the correct physical units. (The mathematical fundizgtakes a vector

and lies it along the diagonal of a square matrix.) The weWyRtcan be thought of as a
diagonal matrix containing the ratio of two images. A problem with the choice (1.38) is that
the denominator might vanish or might even be negative. The way to stabilize any ratio is
suggested at the beginning of Cha28rthat is, we revise the ratia/b to

diag <ab>
diag < b?2+€2 >

W2 (1.39)
wheree is a parameter to be chosen, and the angle braces indicate the possible need for local
smoothing.

To go beyond the scaled adjoint we can ¥geas a preconditioner. To us¥ as a pre-
conditioner we define implicitly a new set of variabledy the substitutioom = Wp. Then
d ~ Fm = FWp. To find p instead ofm, we do CD iteration with the operatéiV instead of
with F. As usual, the first step of the iteration is to use the adjoirdt f FWp to form the
imagep = (FW)'d. At the end of the iterations, we convert frgarback tom with m = Wp.
The result after the first iteratiait = Wp = W(FW)'d = W2F'd turns out to be the same as
Symes scaling.

By (1.38),W has physical units inverse t& Thus the transformatioRW has no units
so thep variables have physical units of data space. Experimentalists might enjoy seeing the
solutionp with its data units more than viewing the solutiorwith its more theoretical model
units.

The theoretical solution for underdetermined systems F'(FF')~1d suggests an alter-
nate approach using instedd= F'W3d. A possibility for W3 is

diag d

W3 T
d diag FFd

(1.40)

Experience tells me that a broader methodology is needed. Appropriate scaling is required
in both data space and model space. We need something that includes a weight for each space,
Wr andWy4 wherem = W ,F'Wqyd.

1.10. ACKNOWLEDGEMENTS 21

| have a useful practical example (stackingvifz) media) in another of my electronic
books (BEI), where | found botW, andWy by iterative guessing. But | don’t know how to
give you a general strategy. | feel this is a major unsolved(?) opportunity.

1.10 ACKNOWLEDGEMENTS

Nearly everything | know about null spaces | learned from Dave Nichols, Bill Symes, Bill
Harlan, and Sergey Fomel.

268 CHAPTER 1. PRECONDITIONING

Index

index, 23
invint2 module, 13

mask1 operator module, 16
mis2 module, 16
module
invint2 , Inverse linear interpolation,
13
mis2 , Missing data interpolation with
and without preconditioning, 16
precsolver , Preconditioned solver, 6
vrms2int , Converting RMS to inter-
val velocity, 11

operator
maskl, copy under mask, 16

precsolver module, 6

vrms2int module, 11

269

270 INDEX

